
The	Use	of	Text	Retrieval	and	
Natural	Language	Processing	in	

Software	Engineering

Sonia	Haiduc
Assistant	Professor

Department	of	Computer	Science
Florida	State	University

2

Sonia	Haiduc

• Academic	background:	

B.Sc in	Romania MS,	Ph.D in	Detroit,	USA

Tallahassee, FL

Florida	State	University

4

SERENE	Lab

Javier	Escobar	Avila Chris	Mills Esteban	Parra	Rodriguez

• Sonia	Haiduc,	Assistant	Professor

• Ph.D.	Students:	

Main	research	interests

• Software	maintenance	and	evolution

• Program	comprehension

• Source	code	analysis

• Mining	software	repositories

• Developer	performance	and	efficiency

Our	goal

• Help	software	developers	
to	build	and	maintain	
software	faster	and	better

• We	often	leverage	
techniques	from	outside	SE
– Information	Retrieval
– Natural	Language	Processing
– Machine	Learning

The	Use	of	Text	Retrieval	and	
Natural	Language	Processing	in	

Software	Engineering

Sonia	Haiduc
Assistant	Professor

Department	of	Computer	Science
Florida	State	University

Textual	Information	in	Software
• Captures	concepts	of	the	problem	domain,	developer	

intentions,	developer	communication,	etc.

• Found	in	many	software	artifacts:
– Requirements
– Design	documents
– Source	code	(identifiers,	comments)
– Commit	notes
– Documentation
– User	manuals
– Q/A	websites	(StackOverflow,	etc.)
– Developer	communication	(emails,	chat,	tweets,	etc.)
– …

Text	Retrieval

• Information	Retrieval	(IR):	the	process	of	actively	
seeking	out	information	relevant	to	a	topic	of	interest	
(van	Rijsbergen)

• Text	Retrieval	(TR):	a	branch	of	IR	where	the	
information	is	in	text	format
– Search	space:	collection	of	documents	(corpus)
– Document - generic	term	for	an	information	unit	

• book,	chapter,	article,	webpage,	etc.
• class,	method,	interface,	etc.
• individual	requirement,	bug	description,	test	case,	e-mail,	design	
diagram,	etc.

Natural	Language	Processing

• Refers	to	the	use	and	ability	of	systems	to	
process	sentences	in	a	natural	language	such	as	
English	(rather	than	in	a	specialized,	artificial	
computer	language	such	as	C++)

• Combines	techniques	from	computer	science,	
artificial	intelligence,	computational	linguistics,	
probability	and	statistics	

TR	and	NLP	in	Software	Engineering

• Applied	to	over	30	different	SE	tasks
o Traceability	Link	Recovery
o Feature/concept/concern/bug	location
o Code	reuse
o Bug	triage
o Program	comprehension
o Architecture/design	recovery
o Quality	assessment	and	measurement
o Software	evolution	analysis
o Defect	prediction	and	debugging
o Automatic	documentation
o Testing

o Requirements	analysis
o Restructuring/refactoring
o Software	categorization
o Licensing	analysis
o Impact	analysis
o Clone	detection
o Effort	prediction/estimation
o Domain	analysis
o Web	services	discovery
o Use	case	analysis
o Team	management,	etc.

Using	TR	and	NLP	for	
Retrieving	Software	Artifacts

• Formulate	the	SE	task	as	a	retrieval	problem	and	find	the	software	artifacts	
that	satisfy	a	particular	information	need

• Some	examples:	
– Bug	Location:	retrieve	all	methods	in	the	code	relevant	for	a	particular	bug	report;
– Bug	Report	De-duplication:	find	all	bug	reports	that	already	exist	and	are	similar	to	

a	new	bug	report,	in	order	to	prevent	duplication.
– Bug	Triage:	given	a	new	bug	report,	find	the	solved	bug	report	that	is	most	similar	

to	the	new	one	and	assign	it	to	the	same	developer.
– Feature	Location:	find	the	classes	in	the	code	that	implement	a	particular	feature	

or	concept;	
– Code	Reuse:	retrieve	pieces	of	code	or	entire	systems	online	that	implement	a	

particular	functionality;
– Clone	and	plagiarism	detection:	given	a	piece	of	code	(e.g.,	a	method),	find	similar	

pieces	of	code	to	it	and	mark	them	as	potential	clones.
– Defect	Prediction:	given	a	method	or	class,	estimate	the	number	of	it	contains	by	

extrapolating	from	similar	artifacts	for	which	the	number	of	defects	is	known.
– Impact	Analysis:	when	changing	a	method,	determine	other	methods	that	may	be	

impacted	by	the	change	by	finding	the	similar	methods	to	it.

Retrieving	Relevant	Software	Artifacts

Relevant	Artifacts

TR/NLP	Model

Query

INPUT

Software	Artifacts

Steps
1. Create	and	preprocess	corpus	using	light	NLP
2. Index	corpus	– choose	the	TR	model
3. Formulate	a	query

• Manual	or	automatic
4. Compute	similarities between	the	query	and	

the	documents	in	the	corpus	(i.e.,	relevance)
5. Rank the	documents	based	on	the	similarities
6. Return	the	top	N	documents	as	the	result	list
7. Inspect	the	results
8. GO	TO	3.	if	needed	or	STOP

Creating	and	Preprocessing	a	
Software	Corpus

• Parsing	software	artifacts	and	extracting	documents
– corpus =	a	collection	of	documents	(e.g.,	methods)

• Text	normalization	(white	space	and	non-textual	
tokens	removal,	tokenization)

• Splitting:	split_identifiers,	SplitIdentifiers,	etc.
• Stop	words	removal

– common	words	in	English,	programming	language	keywords,	
project-specific	words,	etc.

• Abbreviation	and	acronym	expansion
• Stemming

Extracting	Documents
• Documents	can	be	of	different	types	and	granularities	(e.g.,	

methods,	classes,	files,	emails,	paragraphs,	bug	descriptions,	etc.)

• Documents	can	be	of	different	types	and	granularities	(e.g.,	
methods,	classes,	files,	emails,	paragraphs,	bug	descriptions,	etc.)

Extracting	Documents

Transform	Source	Code	to	Plain	Text

public void run IProgressMonitor monitor throws
InvocationTargetException InterruptedException if m_iFlag

processCorpus monitor checkUpdate else if m_iFlag
processCorpus monitor UD_UPDATECORPUS else

processQueryString monitor

Text	Normalization

• Remove	whitespace	and	non-textual	
characters

• Break	up	the	text	in	meaningful	“tokens”	and	
keep	only	what	makes	sense

• Pay	attention	to:
– Numbers: “P450”,	“2001”
– Hyphenation: “MS-DOS”,	“R2-D2”
– Punctuation: “John’s”,	“command.com”
– Case: “us”,	“US”
– Phrases: “venetian	blind”

Splitting

• Splitting:	decomposing	identifiers	into	their	
compound	words

• Identifiers	may	use	division	markers	(e.g.,	
camelCase	and	_),	or	may	not

• Examples:	
– getName ->	‘get’,	‘Name’
– getMAXstring ->	‘get’,	‘MAX’,	‘string’
– ASTNode ->	‘AST’,	‘Node’
– account_number ->	‘account’,	‘number’
– simpletypename ->	‘simple’,	‘type’,	‘name’

Stop	Words

• Very	frequent	words,	with	no	power	of	
discrimination	(e.g.,	programming	language	
keywords,	common	English	terms)

• Typically	function	words,	not	indicative	of	
content	(e.g.,	“the”,	“class”)

• The	stop	words	set	depends	on	the	document	
collection	and	on	the	application

Abbreviation and	
Acronym	Expansion

• Expand	abbreviations	and	acronyms	to	the	
corresponding	full	words

• Examples:	
– mess ->	‘message’	

– src ->	‘source’

– auth ->	‘authenticate’	OR	‘author’?

Stemming

• Identify	morphological	variants,	creating	“classes”
– system,	systems
– forget,	forgetting,	forgetful
– analyse,	analysis,	analytical,	analysing

• Replace	each	term	by	the	class	representative	
(root	or	most	common	variant)

TR	and	NLP	Models

• The	TR/NLP	model	indexes	the	information	in	the	
corpus	for	fast	retrieval

• Different	TR/NLP	models	represent	the	same	corpus	
differently	and	can	lead	to	different	search	results

• Most	Popular	TR	and	NLP	Models	Used	in	SE:
– Vector	Space	Model	(VSM)
– Latent	Semantic	Indexing	(LSI)
– Latent	Dirichlet Allocation	(LDA)
– Okapi	BM25	and	BM25F
– Language	Models

Query	Formulation

• A	query	is	formulated	that	captures	the	
information	need	of	the	developer
– can	be	manually	formulated	by	the	developer	(e.g.,	
“copy	paste”	– for	finding	the	classes	that	implement	
the	copy-paste	feature	in	an	editor)

– can	be	automatically	formulated	based	on	a	software	
artifact	or	written	information	need	(e.g.,	extract	a	
query	directly	from	a	bug	report	written	by	a	user	or	
another	developer)

• The	query	is	then	preprocessed	using	the	same	
approach	used	on	the	corpus

Simple	Query	Improvements

• Spellchecking	->	correct	words

• Compare	with	software	vocabulary	
– remove	words	that	do	not	appear	in	the	software	
system

– use	software	thesaurus	to	suggest	alternative	
words	(i.e.,	synonyms)

Query	Reformulation

• How	can	we	reformulate	a	bad	query?
– Thesaurus	expansion:
• Suggest	terms	similar	to	query	terms

– Relevance	feedback:
• Suggest	terms	(and	documents)	similar	to	
retrieved	documents	that	have	been	judged	to	
be	relevant

–More	advanced:	automatic	based	on	query	
properties,	mining	terms	from	source	code,	etc.

Evaluation
• For	a	given	query,	produce	the	ranked	list	of	documents.
• Determine	a	threshold	and	cut	the	ranked	list	such	that	only	

the	results	up	to	the	threshold	are	considered	as	retrieved.	

• Mark	each	document	in	the	top	results	(up	to	the	threshold)	
that	is	relevant	according	to	the	gold	standard.

• Note:	different	thresholds	on	the	ranked	list	produces	
different	sets	of	retrieved	documents.

Top

threshold

Ranked	List	Thresholds
• Fixed	

– e.g.,	keep	the	first	10	results.

• Score	threshold:	
– e.g.,	keep	results	with	score	in	the	top	5%	of	all	scores.	

• Gap	threshold:	
– traverse	the	ranked	list	(from	highest	to	lowest	score)		
– find	the	widest	gap	between	adjacent	scores
– the	score	immediately	prior	to	the	gap	becomes	the	
threshold to	cut the	list

Precision	and	Recall

documents relevant of number Total
retrieved documents relevant of Number recall =

retrieved documents of number Total
retrieved documents relevant of Number precision=

Relevant
documents

Retrieved
documents

Entire
document
collection

retrieved &
relevant

not retrieved but
relevant

retrieved &
irrelevant

not retrieved &
irrelevant

retrieved not retrieved

re
le

va
nt

irr
el

ev
an

t

Trade-off	Between	Recall	and	Precision

10

1

Recall

Pr
ec

is
io

n
The ideal

Returns relevant documents but
misses many useful ones too

Returns most relevant
documents but includes

lots of junk

F-Measure

• The	traditional	F-measure	or	balanced	F-score	(F1	
score)	is	the	harmonic	mean	of	precision	and	recall	

Precision	and	Recall:	the	Holy	Grail

• Precision	and	recall	do	not	tell	the	entire	story

Good
results

Top

Good
results

Top

• Average	precision:

