
Migration of 
Oracle Forms applications

1

CSw Research Group
Universidad de los Andes

Bogotá D.C., Colombia
Asesoftware SAS.

Bogotá D.C., Colombia

Kelly Garcés
Rubby Casallas 
Edgar Sandoval 
Camilo Alvarez

Cristo Rodríguez
Alejandro Salamanca

Fabian Melo
Sandra Pinto 

Juan Soto

Universitat Oberta 
de Cataluyna

Barcelona, Spain

Jordi Cabot



Oracle Forms Modernization Project
Case Study: Asesoftware (est. 1991) [1]

Business: develop & maintain Oracle Forms systems
Challenge: moving from Oracle Forms to modern 
technologies
• Lack of design information
• Little visibility of what is expected from the 

modernization that results on 
(over)underestimation of time and budget

• It's a time consuming and error prone task

[1] www.asesoftware.com/2



Desktop Oracle Form application

What is Oracle Forms?

3

A programming language and development tool for creating desktop 
applications that interact with Oracle databases

Database tables

CRUD functionality



•Master and master/detail forms
–The basic functionality

•the graphical interface (except the layout) 
•the CRUD logic

–the PLSQL code embedded into triggers

•The target technology is JEE

4

Project scope



Drawbacks of existing migration 
tools

5

Black-box 
approach

Legacy
software

1. Lack of information

2. Difficult to maintain

3. Not user friendly

4. Unknown transformation progress

5. Costly approaches
Target software 
does not operate 
as expected



White-box transformation process

6



Configuring architecture
Personalize the features of target 
architecture through an editor.

● Menu structure definition 
Drawback 3: (Usability)

● Screen classification
○ Configuration pending 

Drawback 1: Data access
○ Unassigned
○ Deprecated
○ Ready

■ Drawback 4: 
configuration process

Drawback 2: 
Maintainability

7



Evaluation
Pilot study for the basic functionality
• Purpose: To compare time savings and quality of 

WBA with these of a manual transformation 
– 4 Asesoftware developers.
– 2 Teams (1 senior, 1 junior).
– Insurance application.

• 2 Forms of different size were chosen (low and high 
complexity).

– Task tracking and survey.

8



Results

“Graphical editor eases the architecture configuration”
“The tool generates a lot of code what result in less 
development effort for us ”9



Results

Errors found in the low complexity form for each method

The quality of code is significantly higher when following the white-box 
transformation than the manual transformation (environ 61%)

10



White-box transformation process

11



Code Patterns Catalog

12

•Field validation

•Field population

•Model constraints

•Miscellaneous

20 Patterns

UNQ_VAL, Unique key validation

SELECT count(1) INTO localVar
FROM tableName
WHERE col1 = fieldA

AND col2 = fieldB
AND ....

IF localVar > 0
SHOW_MESSAGE(msg)
RAISE_ERROR



13

Evaluation (PLSQL Migration)

Pilot study for the PLSQL migration
• Purpose: To validate the correctness of the 

discovered patterns 
– 4 developers
– 72 code segments reviewed by developers against  

the tool outcomes
– 4 applications (Conciliation, Insurance, Bank 

transfer applications, Treasury)



14

Results (PLSQL Migration)

Time saved



• The success of MDE adoption is significantly affected by factors 
such as training and commitment to the project.

• Some patterns reflect the application of organizational coding 
conventions.

• Front code often implement basic data validation (e.g., ranges) 
and user interface logic. 

15

Lessons Learned



Conclusions
The value added of our approach relies on

1. Taking architectural decisions at model level
2. Migrating not only the CRUD functionality but also the PLSQL 

code
3. Generating a clear and understandable target code 
4. Applying the best practices of the target technology
5. Decoupling reverse from forward engineering 

Developers are more productive when following the white-box 
modernization than the manual modernization (environ 40%)

This approach has been instrumented in an innovative product 
called SMoT

16


