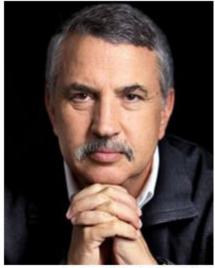


Ancestry, admixture & selection in Colombian genomes

King Jordan

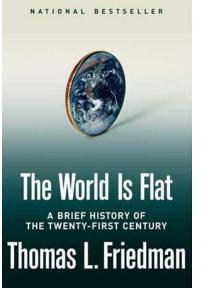
School of Biology, Georgia Tech BIOS Centro de Bioinformática y Biología Computacional

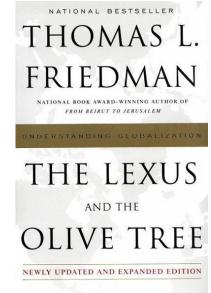

VIDEO

MOST POPI

TODAY'S PAPER

Thomas L. Friedman


HOME PAGE



Josh Haner/The New York Times

"The biggest trend in the world today is ... the merger of globalization and the information technology revolution."

New York Times Feb 25, 2014

BUZZPORT CAMPUS MAP

DIRECTORIES Q Search

Home + A Strategic Vision for Georgia Tech

Strategic Vision Home

Implementation

The Planning Process

THE LATEST NEWS

Planning for 'X Degree' Moves Forward

October 2, 2011

Strategic Plan Steering Committee Forms

August 21, 2011

<u>Technology and Law Task</u> Force Makes Progress

August 7, 2011

Faculty Invited to Participate in First Day Initiative

August 7, 2011

More News >

3

STRATEGIC VISION GOALS

Be Among the Most Highly Respected Technology-Focused

Expand the world's footprint at Georgia Tech

A STRATEGIC VISION FOR GEORGIA TECH

- 2. Extend and leverage Georgia Tech's impact around the world
- 3. Embrace and support globally trained students

We invite you to:

1.

- Review the Plan (PDF) & Institutional Initiatives (PDF)

Learn more >

PanAmerican Bioinformatics Institute

Leveraging biotechnology for public health and economic development in the Americas

The PABI mission

To facilitate public health and economic development in the Americas through education, research and outreach in bioinformatics and genomics.

We are

A Panamerican network of bioinformatics and genomics researchers committed to the use of science in service of humanity. PABI was originally founded as a collaboration between Universidad Nacional de Colombia and Georgia Tech in the USA.

Activities

PABI members engage in collaborative research efforts in bioinformatics and genomics, workshops and short courses for students and faculty, and student exchanges between host institutions in Latin America and the USA.

Developed & Maintained by Lavanya Rishishwar

Georgia Tech & BIOS Project: Human Clinical and Population Genomics

- Genomic applications to health & medicine hold great promise
- Most clinical genomic studies are based on US & European populations
- Need regional (country)-specific surveys of Latin American populations
- Need to develop local capacity in genome sequence analysis & bioinformatics
- Research, development & training in human genomics & bioinformatics

People of Colombia

Colombian demography & admixture

Colombian Demographics				
Ethnic Group	Percent			
Mestizo (Amerindian and European)	58%			
White (European)	20%			
Mulattto (Black/African and European)	14%			
Black (African)	4%			
Zambo (Amerindian and Black/African)	3%			
Amerindian	1%			

- The Colombian population is highly admixed
- Ancestry from Africa, the Americas and Europe

Am. J. Hum. Genet. 67:1287-1295, 2000

Strong Amerind/White Sex Bias and a Possible Sephardic Contribution among the Founders of a Population in Northwest Colombia

Luis G. Carvajal-Carmona,^{1,4} Iván D. Soto,¹ Nicolás Pineda,¹ Daniel Ortíz-Barrientos,¹ Constanza Duque,¹ Jorge Ospina-Duque,² Mark McCarthy,⁵ Patricia Montoya,¹⁻³ Victor M. Alvarez,³ Gabriel Bedoya,¹ and Andrés Ruiz-Linares^{1,4}

OPEN OACCESS Freely available online

PLOS genetics

Geographic Patterns of Genome Admixture in Latin American Mestizos

Sijia Wang¹, Nicolas Ray², Winston Rojas³, Maria V. Parra³, Gabriel Bedoya³, Carla Gallo⁴, Giovanni Poletti⁴, Guido Mazzotti^{5‡}, Kim Hill⁶, Ana M. Hurtado⁶, Beatriz Camrena⁷, Humberto Nicolini⁷, William Klitz^{8,9}, Ramiro Barrantes¹⁰, Julio A. Molina¹¹, Nelson B. Freimer¹¹, Maria Cátira Bortolini¹², Francisco M. Salzano¹², Maria L. Petzl-Erler¹³, Luiza T. Tsuneto¹³, José E. Dipierri¹⁴, Emma L. Alfaro¹⁴, Graciela Bailliet¹⁵, Nestor O. Bianchi¹⁵, Elena Llop¹⁶, Francisco Rothhammer^{16,17}, Laurent Excoffier², Andrés Ruiz-Linares^{1*}

Genome-wide patterns of population structure and admixture among Hispanic/Latino populations

Katarzyna Bryc^{a,1}, Christopher Velez^{b,1}, Tatiana Karafet^c, Andres Moreno-Estrada^{a,d}, Andy Reynolds^a, Adam Auton^{a,2}, Michael Hammer^c, Carlos D. Bustamante^{a,d,3,4}, and Harry Ostrer^{b,3,4}

Admixture dynamics in Hispanics: A shift in the nuclear genetic ancestry of a South American population isolate

Gabriel Bedoya[†], Patricia Montoya[‡], Jenny García[§], Ivan Soto[†], Stephane Bourgeois[¶], Luis Carvajal^I, Damian Labuda[¶], Victor Alvarez[‡], Jorge Ospina[§], Philip W. Hedrick^{††}, and Andrés Ruiz-Linares[†]I^{‡‡}

Composición genética de una población

del suroccidente de Colombia

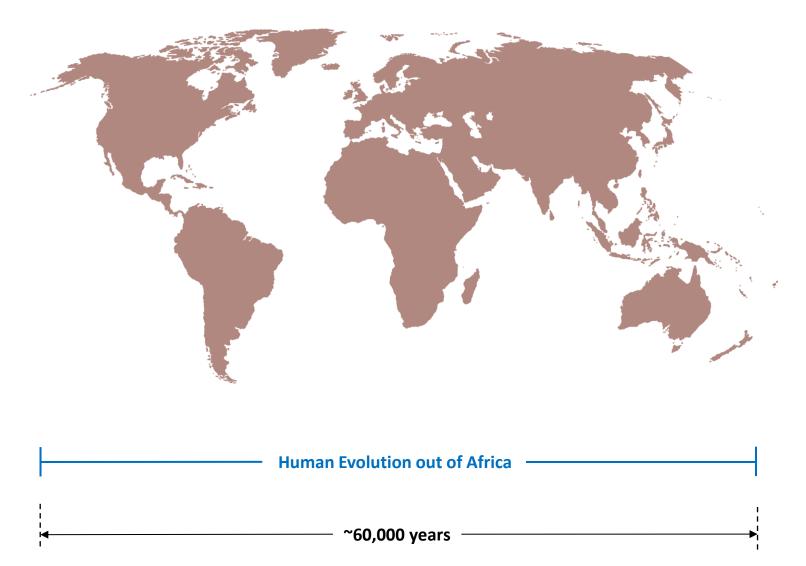
LILIANA CÓRDOBA^a (lilianac27@yahoo.com), JHARLEY JAIR GARCÍA^a, LUZ STELLA HOYOS^B, CONSTANZA DUQUE^a, WINSTON ROJAS^a, SILVIO CARVAJAL^B, LUISA F. ESCOBAR^{B,C}, INGRID REYES^B, NOHELIA CAJAS^B, ADALBERTO SÁNCHEZ^D, FELIPE GARCÍA^D, GABRIEL BEDOYA^A, ANDRÉS RUIZ-LINARES^{A,E}

Revista Colombiana de Antropología

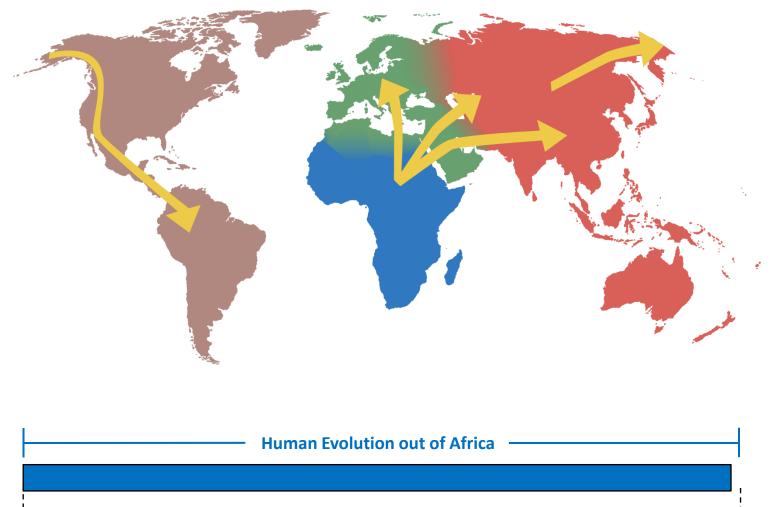
Volumen 48 (I), enero-junio 2012, pp. 21-48

Hum Genet (2003) 112:534-541 DOI 10.1007/s00439-002-0899-8

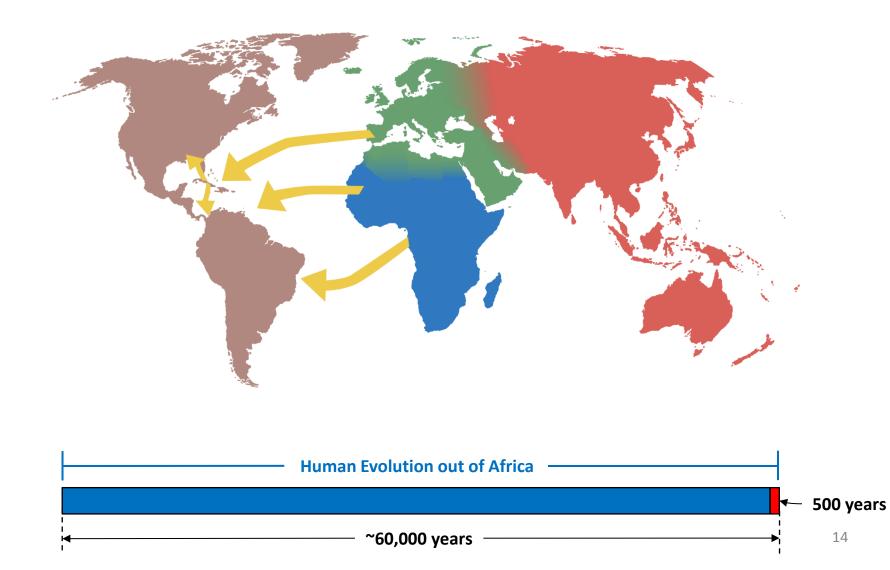
ORIGINAL INVESTIGATION

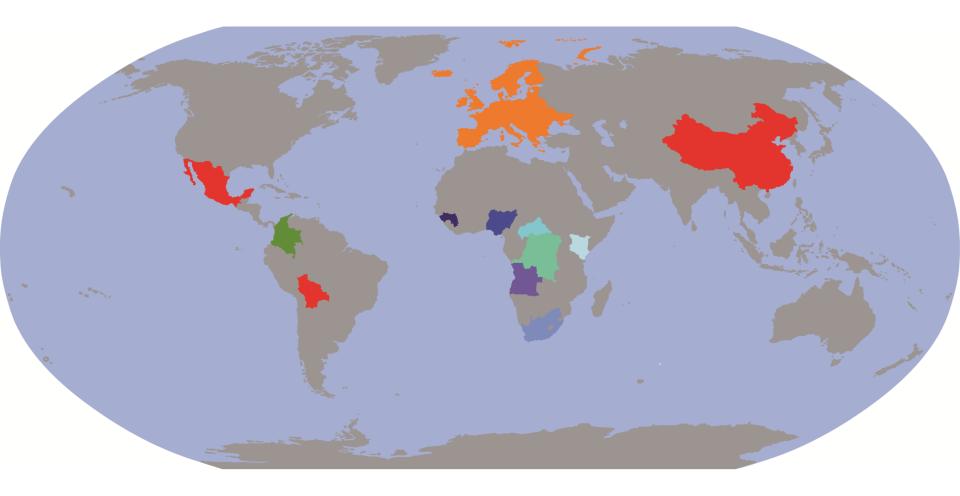

Luis G. Carvajal-Carmona · Roel Ophoff Susan Service · Jaana Hartiala · Julio Molina Pedro Leon · Jorge Ospina · Gabriel Bedoya Nelson Freimer · Andrés Ruiz-Linares

Genetic demography of Antioquia (Colombia) and the Central Valley of Costa Rica


Outline & Approach

- Characterize ancestry & admixture patterns of Colombian genomes
 - Continental & sub-continental levels
 - Genome-wide & locus-specific patterns
 - Overall & sex-specific admixture
- $\,\circ\,$ Relate admixture patterns to health & natural selection
 - Admixture enrichment analysis
 - Interrogation of anomalously admixed genomic regions


Human evolution: diversification & isolation (99%)


Human evolution: diversification & isolation (99%)

Human evolution: convergence & admixture (<1%)

Genome sequences sampled for this study

Name	Ancestral Origin	n1	Source (PMID) ²	Platform ³	
Bantu	Kenya	11	18292342	SNP microarray	
Bantu	South Africa	8	18292342	SNP microarray	
Siaka Pygmy	Central African Republic	22	18292342	SNP microarray	
EU	Northern & Western Europe	85	3498066	Whole genome sequencing	
снв	Beijing, China	92	3498066	Whole genome sequencing	
Mandenka	Senegal	22	18292342	SNP microarray	
Mbuti Pygmy	Congo	13	18292342	SNP microarray	
ian	Namibia	5	18292342	SNP microarray	
fotonac & Bolivian	Mexico & Bolivia	45	3432609	SNP microarray	
/oruba	Nigeria	22	18292342	SNP microarray	
/RI	Nigeria	87	3498066	Whole genome sequencing	
	Admixed Populations	from th	e Americas		
Name	Country	n1	Source (PMID) ²	Platform ³	
CLM	Medellin, Colombia	60	3498066	Whole genome sequencing	
Colombian	Colombia	26	20445096	Illumina 610K array	
Dominican Republican	Dominican Republic	27	20445096	Illumina 610K array	
cuador	Ecuador	20	20445096	Illumina 610K array	
Mexican	Mexico	112	20445096	Affymetrix GeneChip 500K Array S	
Puerto Rican	Puerto Rico	27	20445096	Illumina 610K array	
	mtDNA and Y D	NA Hapi	lotype		
Dataset	Ancestral Origin	n1	Source (PMID) ²	Platform ³	
ntDNA	Gambia, Senegal, Guinea Bissau, Guinea, Sierra Leone	844	21253579	Mixed	
ntDNA	Ghana, Togo, Benin, Nigeria, Cameroon, Sao Tome & Principe	1310	21253579	Mixed	
ntDNA	Congo, DRC	204	21253579	Mixed	
/ DNA	Gambia, Senegal, Guinea Bissau, Guinea, Sierra Leone	388	21253579	Mixed	
(DNA	Ghana, Togo, Benin, Nigeria, Cameroon, Sao Tome & Principe	755	21253579	Mixed	
(DNA	Congo, DRC	178	21253579	Mixed	
ntDNA & Y DNA	Colombia	26	20445096	Illumina 610K array	
ntDNA & Y DNA	Dominican Republic	27	20445096	Illumina 610K array	
ntDNA & Y DNA	Ecuador	20	20445096	Illumina 610K array	
inconta de l'onta				Affymetrix GeneChip 500K Array Set	

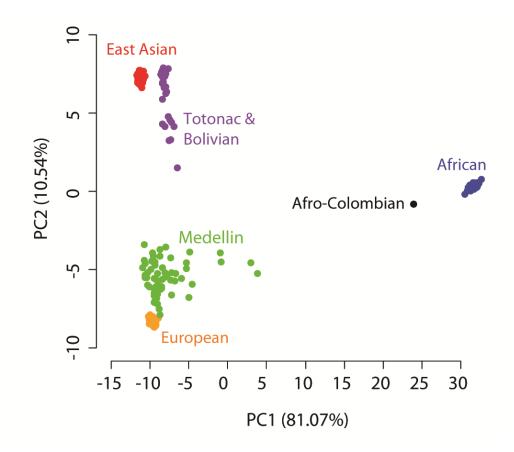
Human Population Genomics = Big Data

Data	# of Genomes	# of Bases
Ancestral Genomes	472	$x 3.0 x 10^8 = 1.4 x 10^{11}$
Admixed Genomes	212	x 3.0 x $10^8 = 6.4 \text{ x } 10^{10}$
Mitochondrial DNA	2570	$x 1.6 x 10^4 = 4.1 x 10^7$
Y DNA	1530	$x 5.0 \times 10^7 = 7.7 \times 10^{10}$
Total	4787	2.8 x 10 ^{11*}

*roughly equal to the number of stars in our Galaxy

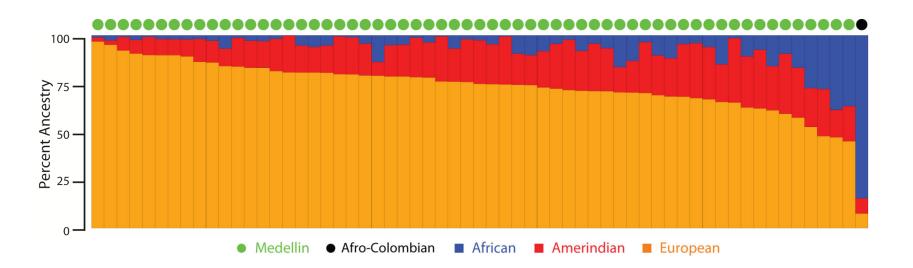
Genome ancestry & admixture analysis

rs2814778


- CTCTTATCTTGGA
- CTCTTATCTTGGA
- CTCTTATCTTGGA
- CTCTTATCTTGGA
- CTCTTATCTTGGA
- **CTCTTATCTTGGA**
- CTCTTACCTTGGA
- CTCTTACCTTGGA
- CTCTTACCTTGGA

- rs2814778 SNP segregates African from Amerindian/European populations
- C allele fixed in African virtually absent in Amerindian/European (< 1%)
- presence of C allele indicates African ancestry at the locus
- process repeated over millions of SNPs

Compare patterns of SNP variation of admixed **Colombians** with ancestral **African**, **Amerindian** and **European** populations


CONTINENTAL ANCESTRY & ADMIXTURE ANALYSIS

Colombian genome-wide ancestry & admixture

Colombian SNP variants were compared to **930,854** genotyped variants from 87 African, 47 Amerindian & 85 European genomes

Colombian genome-wide ancestry & admixture

SUB-CONTINENTAL ANCESTRY & ADMIXTURE ANALYSIS


Sub-continental origins of an Afro-Colombian genome

Geographic Origin	Coordinates	Tribe	No. LCLs 36	No. Males
Central African Republic	4N, 17E	Biaka Pygmy relatives		
Democratic Republic of Congo	1N, 29E	Mbuti Pygmy relatives	15	13
Senegal	12N, 12W	Mandenka relatives	24	16
Nigeria	6-10N, 2-8E	Yoruba relatives	25	13
Namibia	21S, 20E	San relatives	7	7
Kenya	3S, 37E	Bantu NE relatives	12	11
Bantu Speakers S. Africa			8	8
S. Africa Bantu S.E.	29S, 30E	Bantu S.E. Pedi	1	1
S. Africa Bantu S.E.	29S, 29E	Bantu S.E. Sotho	1	1
S. Africa Bantu S.E.	28S, 24E	Bantu S.E. Tswana	2	2
S. Africa Bantu S.E.	28S, 31E	Bantu S.E. Zulu	1	1
S. Africa Bantu S.W.	22S, 19E	Bantu S.W. Herero	2	2
S. Africa Bantu S.W.	19S, 18E	Bantu S.W. Ovambo	1	1
SUBSAHARAN AFRICA			127	109

Source: HGDP-CEPH Project - http://www.cephb.fr/en/hgdp/table.php

Sub-continental origins of an Afro-Colombian genome

24

SEX-SPECIFIC ANCESTRY & ADMIXTURE ANALYSIS

Afro-Colombian sex-specific admixture

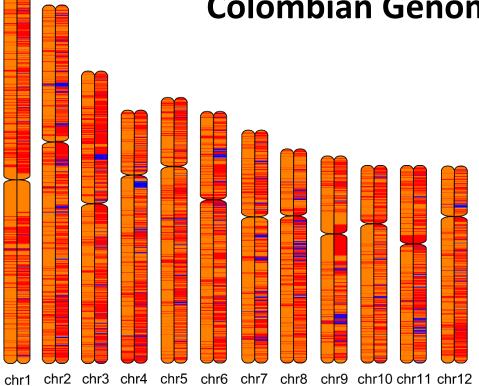
Colombia has the most pronounced sex-specific admixture Patterns in Latin America

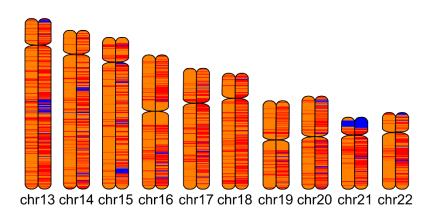
LOCUS-SPECIFIC ANCESTRY & ADMIXTURE ANALYSIS

Genome ancestry & admixture analysis

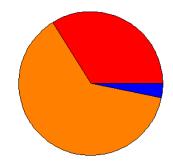
rs2814778

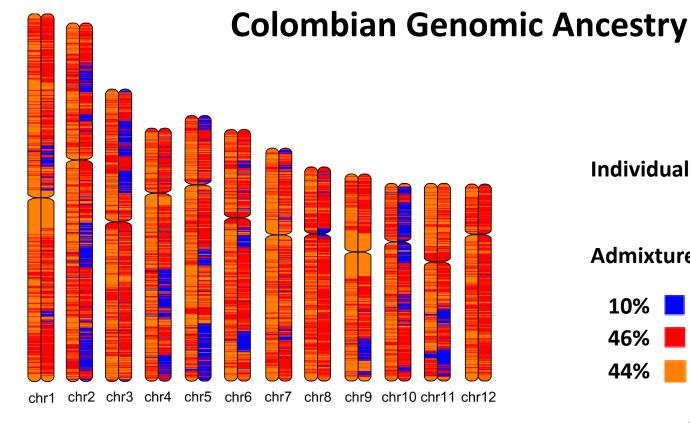
- CTCTTATCTTGGA
- CTCTTATCTTGGA
- CTCTTATCTTGGA
- CTCTTATCTTGGA
- CTCTTATCTTGGA
- **CTCTTATCTTGGA**
- CTCTTACCTTGGA
- CTCTTACCTTGGA
- CTCTTACCTTGGA

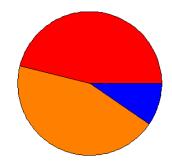

- rs2814778 SNP segregates African from Amerindian/European populations
- C allele fixed in African virtually absent in Amerindian/European (< 1%)
- presence of C allele indicates African ancestry at the locus
- process repeated over millions of SNPs

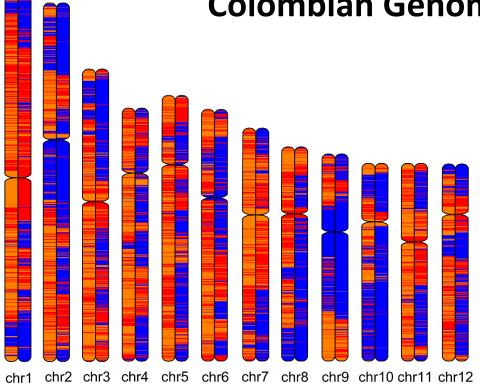

Compare patterns of SNP variation of admixed **Colombians** with ancestral **African**, **Amerindian** and **European** populations

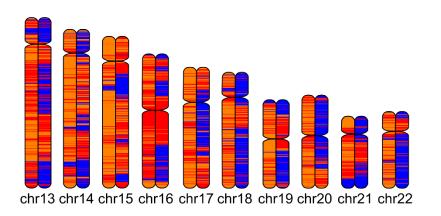
Locus-specific admixture analysis (chromosome painting)



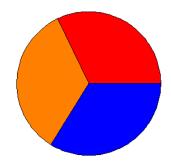


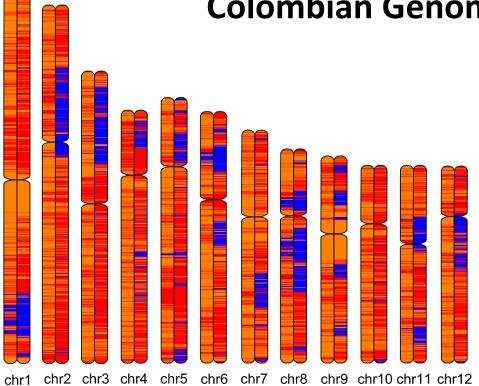


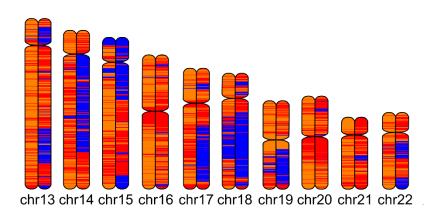




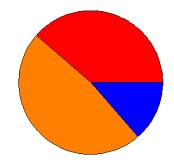
Individual #: 11

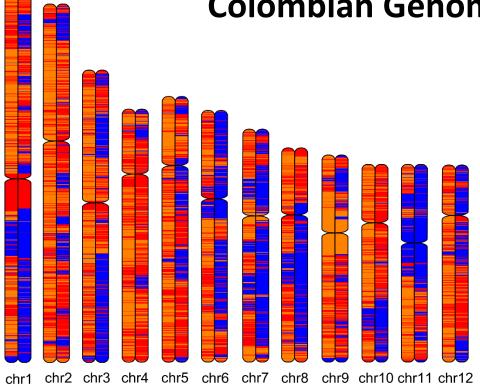


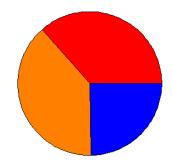




Individual #: 60



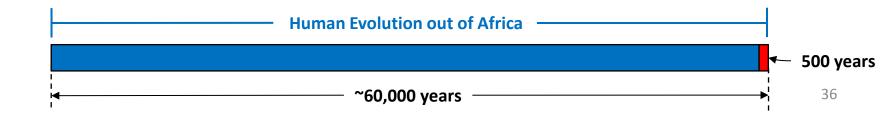




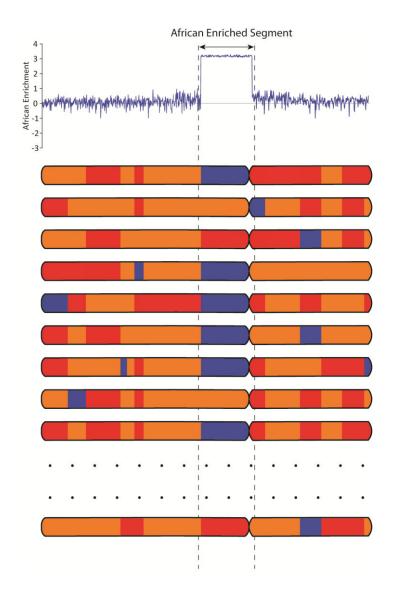
Individual #: 42

ADMIXTURE & SELECTION IN COLOMBIAN GENOMES

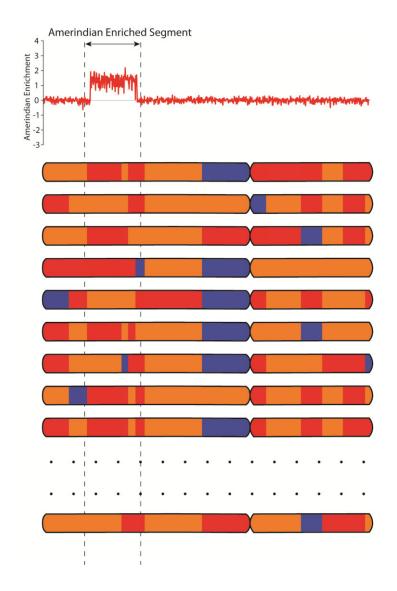
Human evolution: convergence & admixture (<1%)


What does it mean when genomes separated for >60,000 are suddenly brought back together?

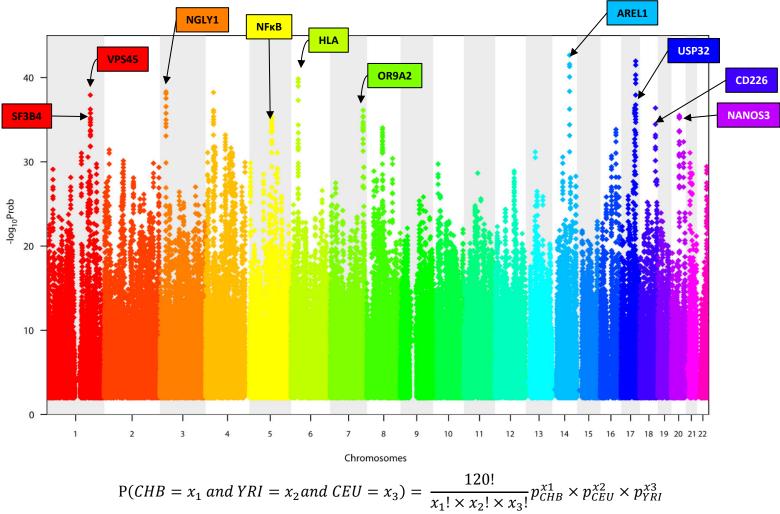
Is the process of admixture somehow related to health & selection?


Working hypothesis:

Specific alleles (SNPs) evolved separately in different human populations based on their regional-specific utility (i.e. relationship to health & fitness)


These pre-evolved ancestral population specific-alleles can be selected in the admixed population based on their utility in the new environment

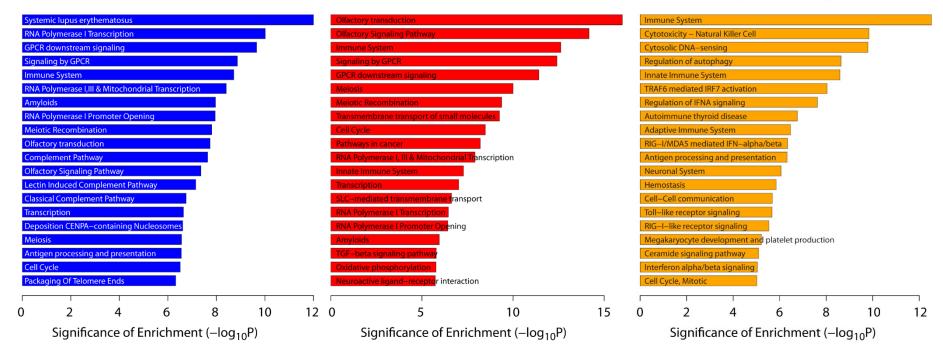
Population admixture enrichment approach


Population admixture enrichment approach

Population admixture enrichment results

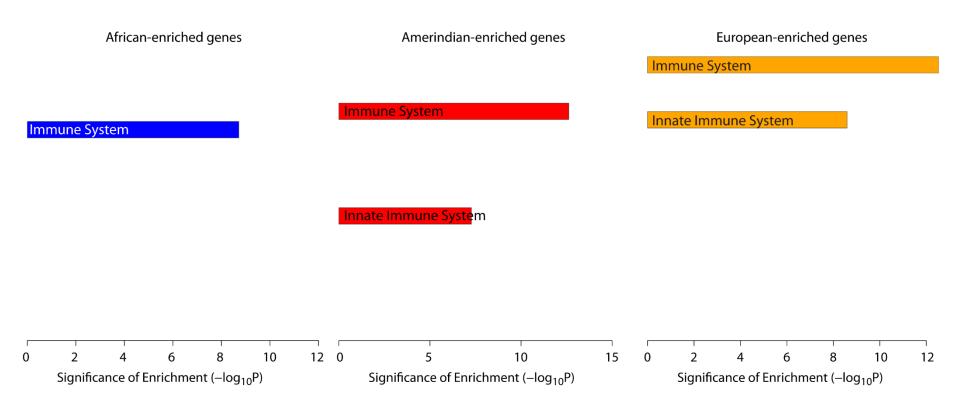
Population admixture enrichment peaks

where,

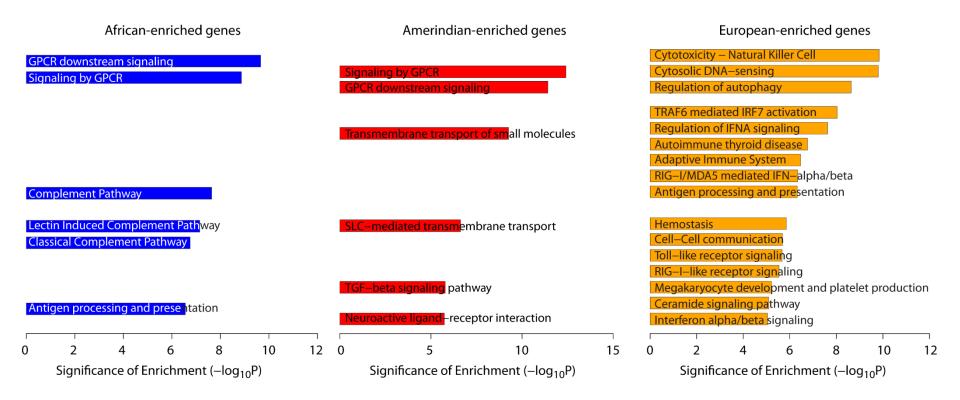

 x_1 , x_2 , x_3 are the observed chromosomes of CHB, YRI and CEU ancestries respectively at a given LD, and p_{CHB} , p_{YRI} , p_{CEU} are the expected probabilities that the given loci will belong to CHB, YRI or CEU ancestry respectively

Functional categories for ancestry-specific enriched genes

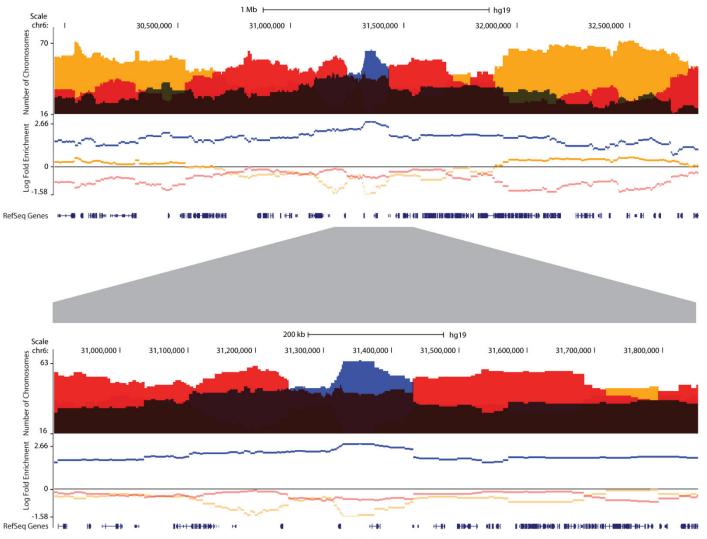
African-enriched genes



European-enriched genes

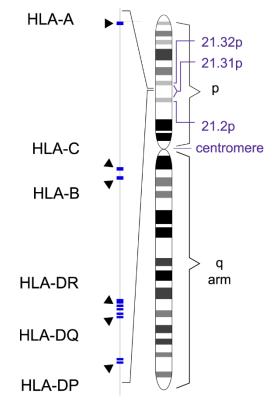

- abundant immune system related functions & pathways
- abundant cell surface/receptor functions along with downstream signaling pathways

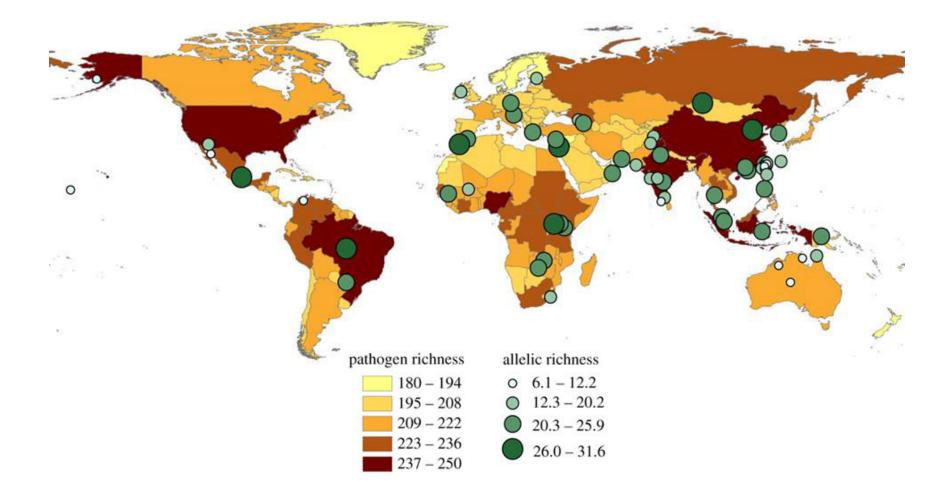
Functional categories for ancestry-specific enriched genes


- abundant immune system related functions & pathways
- abundant cell surface/receptor functions along with downstream signaling pathways

Functional categories for ancestry-specific enriched genes

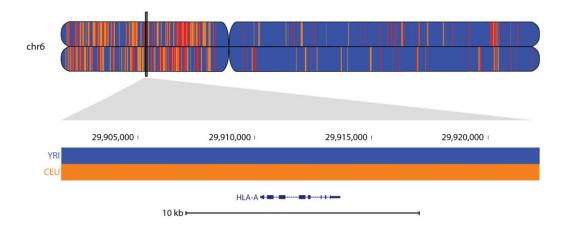
- abundant immune system related functions & pathways
- abundant cell surface/receptor functions along with downstream signaling pathways


African enrichment at the HLA locus

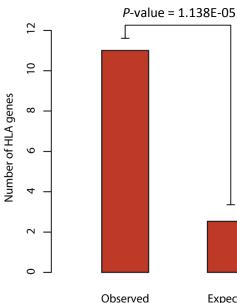

HLA Loci

Admixture & HLA gene diversity

- Major histocompatibility complex (MHC) encodes receptors that present antigens to immune (T) cells
- Associated with over 100 different diseases from diabetes, arthritis to various autoimmune diseases.
- More diversity in HLA genes has been observed in African population owing to more pathogen richness
- This increased diversity provides an increased fitness advantage against pathogens
- The ability to mix and match diverse African HLA alleles could similarly provide a selective advantage in the pathogen rich environment of new world tropical regions

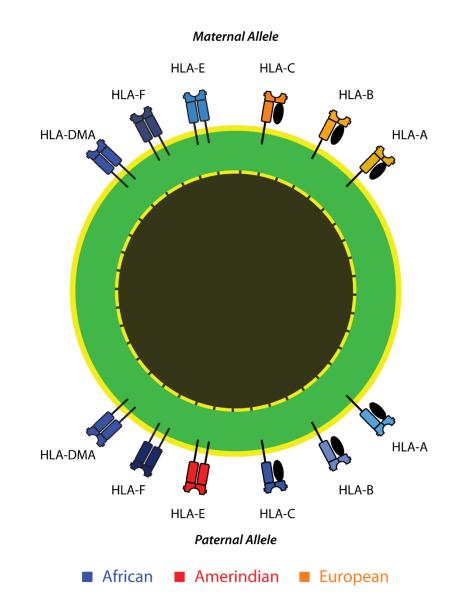


Global Diversity in HLA Loci

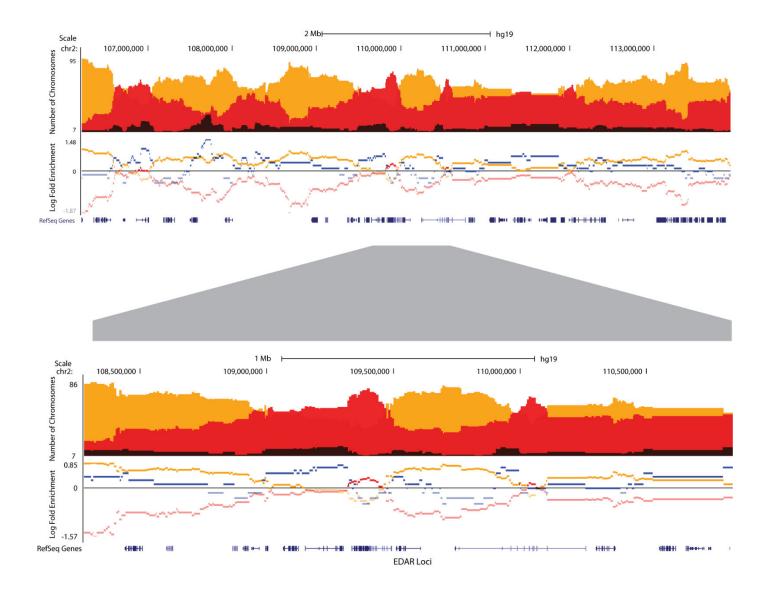


Sanchez-Mazas, A., Lemaître, J. F., & Currat, M. (2012). Distinct evolutionary strategies of human leucocyte antigen loci in pathogen-rich environments. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 367:830-839.

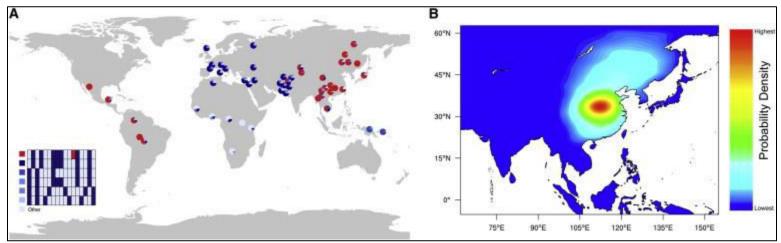
Admixture & HLA gene diversity

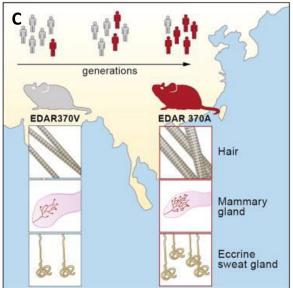


HLA Genes Non-HLA Genes European/African 11 2,393 2,404 Non-European/African 14 21,307 21,321 23,700 25 23,725

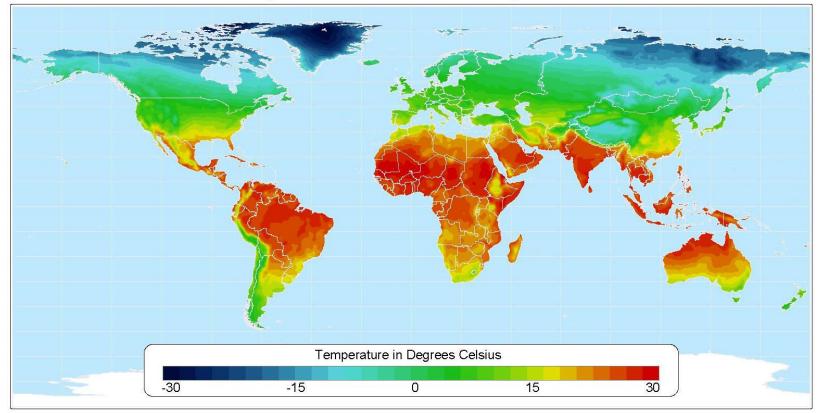


Expected


Admixture & HLA gene diversity


Amerindian depletion at the EDAR locus

Natural selection at the EDAR locus



- EDAR is a cell surface receptor influencing the development of a number hair follicles and cutaneous glands.
- Genetic evidence supporting recent positive selection at this loci has been demonstrated in Asian and Native American populations
- The selected allele leads to increased glandular secretions, increases lubrication and reduces evaporation from exposed facial structures and upper airways, a helpful trait for survival in notably cold and dry environment
- Such an adaptation to cold and dry environments would be disadvantageous in the hotter more humid tropical environment of Colombia

Natural selection at the EDAR locus

Average Annual Temperature

Data taken from: CRU 0.5 Degree Dataset (New, et al.)

Atlas of the Biosphere

Center for Sustainability and the Global Environment University of Wisconsin - Madison

Additional ancestry-enriched genes of interest

Gene	Associated trait
ADCY3	GPCR signaling
AIM2	Innate immune system
AREL1	Negative regulation of Apoptosis
ARFGEF1	Intracellular vesicular trafficking
ATM	Meiosis
CASP8	Innate immunity
CD226	Adaptive immune system, cell adhesion
HLA	Immune response
IFNA10	Regulation of autophagy
KEL	Knockdown confers resistance to HIV-1
LCT	Confers lactase persistence
MANBA	Decreases Colorectal cancer risk. Also associated with Mannosidosis
MAPK10	Immune system
NANOS3	Germ cell development
NFĸB	Reduces breast cancer risk
NGLY1	Metabolism
OR10K1	Olfactory transduction
OR9A2	Olfactory receptor
RAC1	Natural killer cell mediated cytotoxicity
RANBP2	SLC mediated transmembrane transport
SF3B4	Nagar syndrome
SLC24A5	Decreases melanin pigmentation in skin
SLC44A2	Metabolism
TYROBP	Immune System
ULBP1	Cytosolic DNA sensing pathway
USP32	Overexpressed in breast cancer
VPS45	congenital neutropenia and primary myelofibrosis of infancy.

African

Amerindian

Conclusions

- Colombians have highly admixed genomes African, Amerindian & European ancestry
- Ancestry can be assigned at continental and sub-continental levels
- Admixture patterns are highly sex-specific (Amerindian female & European male)
- There is substantial enrichment of ancestry-specific loci genome-wide
- Alleles pre-selected in ancestral regions may have been retained for their utility in the new world (immune function, HLA)

Universidad de Ios Andes

Facultad de Ingeniería

FORO INTERNACIONAL DE BIOINFORMÁTICA Ciencia y tecnología para el futuro del país

Universidad de Ios Andes Facultad de Ciencias

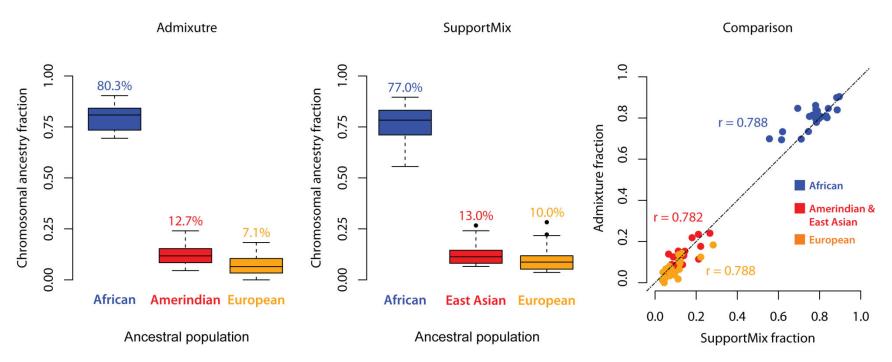
GeorgiaInstitute of **Tech**nology

Augusto Valderrama

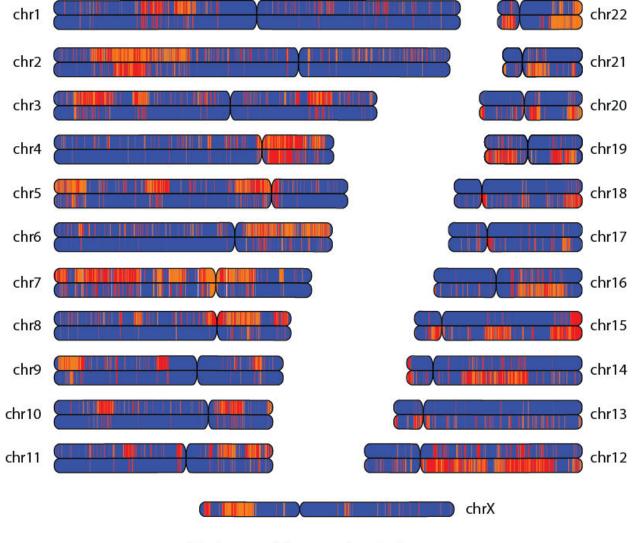
Andrew Conley

Mauricio Rodriguez

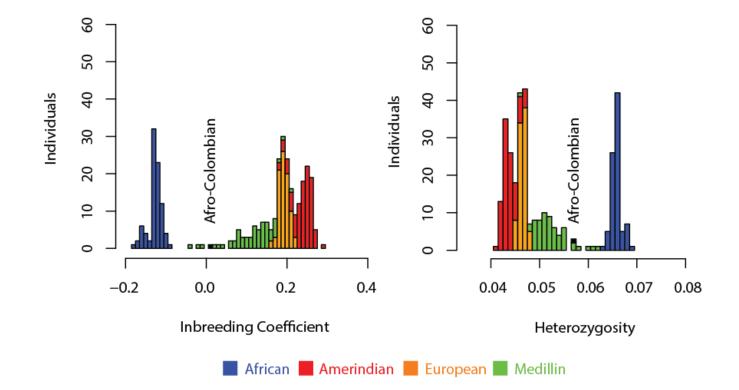
Fredrik Vannberg


Charles Wigington

Lavanya Rishishwar



East Asian SNPs can be used as a surrogate for Indigenous genome admixture



- Use of complete Asian genome sequences allows for the inclusion of 37,939,312 SNP variants (>40x more)
- With this level of resolution genomic ancestry can be ascertained for individual chromosomes, sub-regions and down to the individual nucleotide level
 5/21/2014

Afro-Colombian chromosomal ancestry admixture

Afro-Colombian genetic heterozygosity

